Note

Structural characterisation of the exocellular polysaccharide from *Cyanospira* capsulata

Mauro Marra*,

Dipartimento di Biologia, Università di Roma "Tor Vergata", Via O. Raimondo, 00173 Roma (Italy)

ALESSANDRO PALMERI, ALESSANDRO BALLIO,

Dipartimento di Scienze Biochimiche, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma (Italy)

Annalaura Segre.

Istituto di Strutturistica Chimica "G. Giacomello" del CNR, Monterotondo Stazione, Roma (Italy)

AND MOREY E. SLODKI

United States Department of Agriculture, Northern Regional Research Center, 1815 North University Street, Peoria, IL 61604 (U.S.A.)

(Received January 24th, 1989; accepted for publication, July 20th, 1989)

Cyanospira capsulata, a heterocystous cyanobacterium isolated¹ from Magadi lake (Kenya) in 1982, synthesises an exocellular polysaccharide. Some compositional data on this macromolecule, together with its production under laboratory conditions and its isolation from the bacterial slime, have been reported². A better characterisation of this hydrocolloid became desirable in view of its interesting rheological properties³.

We now report preliminary results on the purification, composition, and structure of the polysaccharide.

The crude polysaccharide contained⁴ 6% of protein; when an aqueous solution was kept for 1 h at 100° and then centrifuged, the protein content of the material in the supernatant solution was reduced to 2%. This figure remained constant on further treatment with isoamyl alcohol–chloroform or after gel-filtration chromatography on Sephadex G-100. The presence of proteins in purified preparations of the polysaccharide was confirmed by polyacrylamide gel electrophoresis with sodium dodecyl sulphate, which showed a broad major band with $M_{\rm r}$ 66,000 and minor bands of lower $M_{\rm r}$. The association of proteins or peptides with several polysaccharides has been reported^{5,6}, together with some indications in favour of a functional and structural role for these components.

^{*}Author for correspondence.

NOTE 339

TABLE I

THE AMINO ACID COMPOSITION OF THE PROTEINACEOUS COMPONENTS IN PURIFIED Cyanospira capsulata POLYSACCHARIDE

Amino acid	Residues per 1000 residues	Amino acid	Residues per 1000 residues	
Aspartic acid	117	Methionine	0	
Threonine	86	Isoleucine	41	
Serine	62	Leucine	57	
Glutamic acid	96	Tyrosine	0	
Proline	27	Phenylalanine	41	
Glycine	120	Histidine	14	
Alanine	120	Lysine	5	
Cysteine	0	Arginine	24	
Valine	53	e e		

Amino acid analysis of the purified polysaccharide (Table I) revealed a high proportion of aspartic acid, glutamic acid, glycine, and alanine, and the absence of cysteine, methionine, and tyrosine. The protein content calculated from amino acid analysis agrees with that measured by the Lowry procedure. The composition reported in Table I is similar to that of extracellular polysaccharides from other cyanobacteria^{7,8} and is reminiscent of those of pectins from higher plants⁵.

Acid hydrolysis of the purified polysaccharide, followed by h.p.l.c. of sugars derivatised with 5-dimethylaminonaphthalene-1-sulphonylhydrazine (Dns-hydrazine), revealed glucose, mannose, arabinose, fucose, and galacturonic acid. For quantitative determination, the best conditions for acid hydrolysis were found to be treatment with 2M trifluoroacetic acid for 180 min at 120°. The figures obtained (Table II) after extrapolation of the observed values to zero showed the polysaccharide to contain equimolar proportions of the component monosaccharides. These data were confirmed also by g.l.c.-m.s. of the sugars as the acetylated aldononitriles prepared after carboxyl reduction (NaBD₄) and hydrolysis of the polysaccharide. Analysis of the derivatives revealed galactose-6, 6- d_2 , arabinose, fucose, mannose, and glucose in equimolar proportions.

Methylation analyses (Table III) revealed $(1\rightarrow 3)$ -linked glucose and $(1\rightarrow 4)$ -linked mannose. The arabinose and half of the galacturonic acid residues occurred as non-reducing end groups, and branching involved the fucose and the remainder of the galacturonic acid residues.

Smith degradation, followed by acid hydrolysis and h.p.l.c. of the Dns-sugars (Table II) revealed loss of the arabinose and mannose; the remaining sugars were still present in equimolar proportions. These results agreed with the formation of 2,3,4-tri-O-methylarabinose and 2,3,6-tri-O-methylmannose in the methylation analysis.

Partial acid hydrolysis (2M trifluoroacetic acid, 1 h, 100°) of the polysaccharide and ion-exchange chromatography of the products gave neutral and acidic com-

TABLE II
SUGAR COMPOSITION OF Cyanospira capsulata POLYSACCHARIDE

Treatment	Component sugar (%) ^a				
	Glc	Ara	Man	Fuc	GalA
(1) Hydrolysed in 2m CF ₃ COOH at 120° for 3 h (2) As in (1) after Smith degradation	20 ± 3^{b} 34 ± 3	20 ±3	19 ±2	16 ±2 31 ±2	25 ±4 34 ±4

^aValues extrapolated at zero time. ^bErrors calculated from three different experiments.

TABLE III

METHYLATION ANALYSES OF CARBOXYL-REDUCED EXOPOLYSACCHARIDE OF Cyanospira capsulata

Methylated sugara	Mole % as		
	Alditol acetate ^b	PAAN ^c	
$2,3,4,6-Me_4-Gal(6,6-d_2)$	8	8	
2,3,4-Me ₃ -Ara	16	17	
2,3,6-Me ₃ -Glc	30	28	
2,3,6-Me ₃ -Man	15	20	
$4,6-\text{Me}_2-\text{Gal}(6,6-d_2)$	1 1	6	
2-Me-Fuc	20	21	

^a2,3,4,6-Me₄-Gal = 2,3,4,6-tetra-*O*-methyl-D-galactose, *etc.* ^bHydrolysis with 2M CF₃COOH (120°, 20 min). ^cAcetylated aldononitriles. Sugars were released by sequential formolysis (aq. 89% formic acid, 100°, 2 h) and acetolysis/hydrolysis (80°, 4-h periods). Values corrected for degradation of 2,3,4-Me₃-Ara.

ponents. Gel filtration of the neutral fraction gave one disaccharide which yielded equimolar amounts of fucose and mannose on hydrolysis. The 13 C-n.m.r. spectra confirmed the presence of the two monosaccharides (Table IV). Assignment of individual resonances based on differential-isotope-induced shift¹⁰ and comparison with literature data¹¹⁻¹³ indicated that fucose was $(1\rightarrow 4)$ -linked to mannose. The chemical shift difference between the resonances of the α and β forms of the mannose residue is close to reported data¹⁴.

The configurations at the anomeric centres in the disaccharide were obtained from the $^1\text{H-n.m.r.}$ data. That mannose was the reducing residue was inferred from the characteristic 15 H-1 resonances at δ 4.97 ($J_{1,2}$ 1.4 Hz) and 4.71 ($J_{1,2}$ <1 Hz) for the α and β forms, respectively. The signal at δ 1.16 (d) is characteristic 16,17 of H-6,6,6 of fucose, and that at δ 4.52 (J ~1 Hz) for H-1 indicated 18 this sugar to be α . The results from n.m.r. spectroscopy suggested the disaccharide to have the structure α -Fuc-(1 \rightarrow 4)-Man.

Gradient elution of the acidic components retained by the ion-exchange column yielded three fractions which could not be further resolved by gel-filtration chromatography. These fractions were heterogeneous, as shown by the occurrence

TABLE IV
¹³ C-n.m.r. Chemical shifts (p.p.m.) for the disaccharide and the assignments

Atom	α -Fuc $(D_2O)^a$	$lpha$ -Man $(D_2O)^a$	$β$ -Man $(D_2O)^a$	α-Fuc (Me ₂ SO) ^b	α-Man (Me ₂ SO) ^b
C -1	100.98	94.66	94.50	101.74	94.57
	$(0.00)^c$	(0.12)	(0.11)		
C-2	70.85	71.25	71.66	71.34	70.70
	(0.12)	(0.12)	(0.12)		
C-3	73.21	69.82	72.52	73.61	69.86
	(0.10)	(0.10)	(0.10)		
C-4	79.15	77.58	77.26	78.70	77.39
	(0.05)	(0.00)	(0.00)		
C-5	76.65	76.75	75.59	76.23	77.09
	(0.00)	(0.02)	(0.02)		
C-6	19.80	61.39	61.39	20.33	61.30
	(0.04)	(0.10)	(0.10)		

^aChemical shifts relative to internal 1,4-dioxane (67.4 p.p.m.). ^bChemical shifts relative to Me₂SO (40.4 p.p.m.). ^cDeuterium-induced differential isotope shifts.

in their ¹H-n.m.r. spectra of multiple signals for H-6,6,6. Attempts to purify these mixtures by ion-exchange h.p.l.c. were unsuccessful.

The purified polysaccharide contains acetyl substituents. They were detected (δ 2.1, s) in the ¹H-n.m.r. spectra of the acidic fractions. Colorimetric and g.l.c. analyses of the hydrolysed polysaccharide indicated the presence of acetal-linked pyruvate groups (2–3%). As this finding was not confirmed by the lactic dehydrogenase procedure¹⁹, the possibility of misleading results, due to degradation products arising from prolonged hydrolysis, cannot be ruled out.

The results reported above accord with a decasaccharide repeating-unit in which arabinose and galacturonic acid branches are linked to fucose and galacturonic acid residues, respectively, and the main chain galacturonic acid pair (1) must occur in a 1:2 ratio with the remaining tetrasaccharide repeat (2).

$$\rightarrow$$
2 or 3)-GalA-(1 \rightarrow \rightarrow 3)-Glc-(1 \rightarrow 3 or 4)-Fuc-(1 \rightarrow 4)-Man-(1 \rightarrow 2

Ac-3GalA

Ara

1

The resistance of the galacturonic acid branches to oxidation with periodate indicates 3-O-acetylation.

EXPERIMENTAL

The crude polysaccharide was prepared² at Centro di Studio dei Microorganismi Autotrofi of the Italian Research Council (CNR), Florence.

342 NOTE

Purification of the polysaccharide. — A solution of the crude polysaccharide in deionised water (10 mg/mL) was heated for 1 h at 100°, then centrifuged at 100 000g for 45 min. The supernatant solution was dialysed against water and then lyophilised, to give the purified polysaccharide with a yield of \sim 70%.

Protein and amino acid analysis. — Protein contents of the crude and purified polysaccharides were estimated by the method of Lowry et al.⁴. Amino acids were determined with an amino acid analyzer (LKB 4400). Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate was performed according to Laemmli²⁰ with the use of a discontinuous buffer system.

Total hydrolysis and sugar analysis. — Solutions of the polysaccharide (5 mg) in 2M CF₃COOH (1 mL) were heated at 120° in sealed vials for periods of 20 to 240 min. Each solution was then concentrated under reduced pressure, an aliquot (100 μ L) of a solution of the residue in water (1 mL) was treated with Dns-hydrazine, and the products were analysed by reverse-phase h.p.l.c., according to the method of Mopper and Johnson²¹ with minor modifications. H.p.l.c. was performed on a Perkin-Elmer Series 2 liquid chromatograph equipped with a Perkin-Elmer LC-55 variable-wavelength detector operating at 254 nm, a Perkin-Elmer LCI-100 electronic integrator, and a column (25 × 0.46 cm) of Supelcosil LC18 (Supelco Inc.).

For g.l.c.-m.s. analyses, carboxyl reduction of the polysaccharide was performed with NaBD₄ via the ethylene glycol ester²².

Methylation analyses. — The carboxyl-reduced polysaccharide was analysed using the procedure described 23,24 . Methyl silicone capillary columns (fused silica, 25 m \times 0.2 mm i.d.) were employed for g.l.c. (flame-ionisation detector) and g.l.c.-m.s. For the partially methylated, acetylated aldononitriles, the temperature program was 3 min at 130° , then 5° /min to 185° ; for methylated alditol acetates, 3 min at 150° , then 5° /min to 185° . The products were identified by e.i.- and c.i.-m.s. Quantitation was based on the detector responses, which were corrected for differences in molecular weight.

Smith degradation. — The polysaccharide (100 mg) was treated under the conditions described by Cardemil and Wolk²⁵.

Determination of pyruvic acid. — A 0.4% solution of the polysaccharide in 2M HCl was heated for 3 h at 100°. Aliquots of this solution were used to determine the pyruvic acid content by the 2,4-dinitrophenylhydrazine method²⁶.

Graded acid hydrolysis of the polysaccharide. — The polysaccharide (600 mg) was hydrolysed in 2M CF₃COOH (60 mL) for 1 h at 100° in sealed vials. The acid was evaporated in vacuo and the product was chromatographed on a column (1.5 \times 40 cm) of QAE Sephadex A-25 equilibrated with 5mM phosphate buffer (pH 7). Elution with the same buffer (15 mL/h, 120 mL) afforded the unretained fraction, which was concentrated under reduced pressure and chromatographed on a column (15 \times 20 cm) of Spectragel HW-40F by elution with formic acid (pH 3.3, 12 mL/h). Fractions (2 mL) were collected and monitored with the phenol–sulphuric acid reagent²⁷. The disaccharide fractions, homogeneous by t.l.c.²⁸, were combined and

NOTE 343

freeze-dried. Yields in different preparations were from 3 to 4%. Acidic components were eluted from the ion-exchange column with a linear gradient formed from 5mm phosphate buffer (pH 7, 150 mL) and 300mm NaCl in the same buffer (150 mL). Fractions (2 mL) were collected and tested for the presence of sugars as above. Appropriate fractions were combined, freeze-dried, and chromatographed on the gel-filtration column as described before.

N.m.r. spectroscopy. — N.m.r. spectra were recorded with a Bruker AM 200 spectrometer. Samples were deuterium-exchanged by freeze-drying solutions in D_2O (99.7 and 99.96%).

ACKNOWLEDGMENTS

This work was supported by Enichem S.p.A. (Milan, Italy), and partly by "Progetto Finalizzato Chimica Fine e Secondaria II". We thank Dr. E. Schininà for amino acid analysis, J. J. Nicholson for work carried out at the Northern Regional Research Center, and Professor V. Crescenzi for stimulating discussions.

REFERENCES

- 1 G. FLORENZANO, C. SILI, E. PELOSI, AND M. VINCENZINI, Arch. Microbiol., 140 (1985) 301-306.
- 2 C. SILI, E. PELOSI, M. VINCENZINI, R. MATERASSI, AND G. FLORENZANO, *Proc. Eur. Congr., Biotechnol., Third*, Vol. 1, Verlag Chemie, Weinheim, 1984, pp. 91-96.
- 3 L. NAVARINI, C. BERTOCCHI, A. CESARO, R. LAPASIN, AND V. CRESCENZI, Carbohydr. Polym., in press.
- 4 O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR, AND R. J. RANDALL, J. Biol. Chem., 193 (1951) 265-274.
- 5 D. M. W. Anderson, F. J. McDougall, and C. G. A. McNabb, Food Hydrocolloids, 1 (1987) 243–246.
- 6 D. M. W. ANDERSON, Food Addit. Contam., 3 (1986) 123-132.
- 7 M. NAKAGAWA, Y. TAKAMURA, AND O. YAGI, Agric. Biol. Chem., 51 (1987) 329-337.
- 8 M. SCHRADER, G. DREWS, J. R. GOLECKI, AND J. WECKESSER, J. Gen. Microbiol., 128 (1982) 267–272.
- 9 K. Stellner, H. Saito, and S. Hakomori, Arch. Biochem. Biophys., 155 (1973) 464-472.
- 10 P. E. PFEFFER, K. M. VALENTINE, AND F. W. PARRISH, J. Am. Chem. Soc., 101 (1979) 1265-1274.
- 11 I. BACKMAN, B. ERBING, P.-E. JANSSON, AND L. KENNE, J. Chem. Soc., Perkin Trans. 1, (1988) 889–898
- 12 P.-E. JANSSON, L. KENNE, AND E. SCHWEDA, J. Chem. Soc., Perkin Trans. 1, (1988) 2729-2736.
- 13 M. FORSGREN, P.-E. JANSSON, AND L. KENNE, J. Chem. Soc., Perkin Trans. 1, (1985) 2383-2388.
- 14 M. J. KING-MORRIS AND A. S. SERIANNI, J. Am. Chem. Soc., 109 (1987) 3501-3508.
- 15 A. J. Mort, J. P. Utille, G. Torri, and A. S. Perlin, Carbohydr. Res., 121 (1988) 221-232.
- 16 E. F. HOUNSELL, N. J. JONES, H. C. GOOI, T. FEIZI, A. S. R. DONALD, AND J. FEENEY, Carbohydr. Res., 178 (1988) 67–78.
- 17 L. M. LIKHOSHERSTOV, O. S. NOVIKOVA, V. E. PISKAREV, E. E. TRUSIKHINA, V. A. DEREVITSKAYA, AND N. K. KOCHETKOV, *Carbohydr. Res.*, 178 (1988) 155–163.
- 18 H. M. FLOWERS, Carbohydr. Res., 119 (1983) 75-84.
- 19 M. DUCKWORTH AND W. YAPHE, Chem. Ind. (London), (1970) 747-748.
- 20 U. K. LAEMMLI, Nature (London), 227 (1970) 680-685.
- 21 K. MOPPER AND L. JOHNSON, J. Chromatogr., 256 (1983) 27-38.
- 22 I. W. SUTHERLAND, Biochemistry, 9 (1970) 2180-2185.
- 23 M. E. SLODKI, R. E. ENGLAND, R. D. PLATTNER, AND W. E. DICK, JR., Carbohydr. Res., 156 (1986) 199-206.

- 24 M. C. CADMUS, M. E. SLODKI, AND J. J. NICHOLSON, J. Ind. Microbiol., 4 (1989) 127-133.
- 25 L. CARDEMIL AND C. P. WOLK, J. Biol. Chem., 251 (1976) 2967-2975.
- 26 J. Sloneker and D. G. Orentas, *Nature (London)*, 194 (1962) 478–479.
- 27 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350–356.
- 28 K. KOIZUMI, T. UTAMURA, AND Y. OKADA, J. Chromatogr., 321 (1985) 145-157.